A Krylov Subspace Method for Quadratic Matrix Polynomials with Application to Constrained Least Squares Problems

نویسندگان

  • Ren-Cang Li
  • Qiang Ye
چکیده

We present a Krylov subspace–type projection method for a quadratic matrix polynomial λ2I − λA − B that works directly with A and B without going through any linearization. We discuss a special case when one matrix is a low rank perturbation of the other matrix. We also apply the method to solve quadratically constrained linear least squares problem through a reformulation of Gander, Golub, and von Matt as a quadratic eigenvalue problem, and we demonstrate the effectiveness of this approach. Numerical examples are given to illustrate the efficiency of the algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Subspace Approximation Method for the Quadratic Eigenvalue Problem

Quadratic eigenvalue problems involving large matrices arise frequently in areas such as the vibration analysis of structures, MEMS simulation, and the solution of quadratically constrained least squares problems. The typical approach is to solve the quadratic eigenvalue problem using a mathematically equivalent linearized formulation, resulting in a doubled dimension and a lack of backward sta...

متن کامل

Inner-Iteration Krylov Subspace Methods for Least Squares Problems

Stationary inner iterations in combination with Krylov subspace methods are proposed for least squares problems. The inner iterations are efficient in terms of computational work and memory, and serve as powerful preconditioners also for ill-conditioned and rank-deficient least squares problems. Theoretical justifications for using the inner iterations as preconditioners are presented. Numerica...

متن کامل

Recycling Subspace Information for Diffuse

We discuss the efficient solution of a large sequence of slowly varying linear systems arising in computations for diffuse optical tomographic imaging. In particular, we analyze a number of strategies for recycling Krylov subspace information for the most efficient solution. We reconstruct three-dimensional absorption and scattering information by matching computed solutions from a parameterize...

متن کامل

Parallel Full Space SQP Lagrange-Newton-Krylov-Schwarz Algorithms for PDE-Constrained Optimization Problems

Optimization problems constrained by nonlinear partial differential equations have been the focus of intense research in scientific computing lately. Current methods for the parallel numerical solution of such problems involve sequential quadratic programming (SQP), with either reduced or full space approaches. In this paper we propose and investigate a class of parallel full space SQP Lagrange...

متن کامل

Newton-Krylov Type Algorithm for Solving Nonlinear Least Squares Problems

The minimization of a quadratic function within an ellipsoidal trust region is an important subproblem for many nonlinear programming algorithms. When the number of variables is large, one of the most widely used strategies is to project the original problem into a small dimensional subspace. In this paper, we introduce an algorithm for solving nonlinear least squares problems. This algorithm i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2003